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Brain’s ‘Inner GPS’
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Patterns Search in Big Data

Dr. Xiaoping Zhang, CEO and cofounder of EidoSearch

* Internationally renowned expert in information
processing

 Developed algos for genome sequencing, EEG
neural activity and NASA imaging
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A Paradigm Shift in the Predictive
Modeling of Big Data

* Models require too many assumptions
* Models are too rigid and limited in capability

* Models are becoming more and more complex

e Associative memory supplants the need for traditional
models

* Organized time series data IS the model for generating Predictive
Analytics
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The Approach

e Just as the human brain uses associative memory, we use prior
experiences to predict outcomes

e Associative memory does not require rigid or simplifying
assumptions — the data (experiences) predicts the future
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The Approach

Model vs Memory — Catching a Baseball
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Approach Traditional Modeling Associative Memory

Input Mass of the ball, initial velocity Compare trajectory to similar trajectories
Equation Law of gravity, model of air resistance Not necessary!

Prediction Point where the ball is predicted to land Area where the ball landed after similar

trajectories
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Paradigm Shift in Finance

 As models progress, explanations tend to become more and
more complex a Paradigm Shift offers radical simplification

* As an example of increasing complexity in models, let’s take
a look at modeling volatility in finance
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Traditional Modeling

e 1982: ARCH - Assume the variance of the current error term to be a function of
the actual sizes of the previous time periods' error terms

* 1993: NGARCH - Reflects the leverage effect, signifying that negative returns
increase future volatility by a larger amount than positive returns of the same
magnitude

e 1995: GARCH-M and QGARCH - Used to model symmetric effects of positive and
negative shocks

e 2013: fGARCH - Omnibus model that nests a variety of symmetric and
asymmetric GARCH models
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The World According to Pattern
Search
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The World According to Pattern

Search
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The World According to Pattern
Search
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The World According to Pattern
Search
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The World According to Pattern
Search
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The Middle projection line is the average return of the most similiar historic patterns in the next period.
The Upper and Lower Bound projection lines show standard deviation of the up results and down resulls, respectively, in the next period.
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Janus Capital Group (JNS)
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° 62 similar instances in US Equities

* Only 3 similar instances in Financial Services
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Projected Range of Outcomes

 The stocks are down on average -8.5% over the next 1
month with more than 6x the downside to upside.

JNS -8.5% 4.4% -28.9%

E ido SearCh Copyright © 2014 - All Rights Reserved. | Boston ® New York ¢ Toronto



Actual Outcome
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Empirical Validation

Pattern Forecast Number of % in % in % in % in
Length Length  Predictions Bucket 1  Bucket 2 Bucket 3  Bucket 4
1 month 5 days 986,140 13.20% 37.30% 37.00% 12.50%
3 months 1 month 960,623 13.60% 37.20% 37.30% 11.80%
6 months 3 months 931,333 14.60% 36.00% 38.50% 10.90%
6 months 6 months 894,728 15.70% 33.60% 39.40% 11.20%
9 months 6 months 900,443 15.70% 33.50% 39.60% 11.20%
4,673,267 14.60%  35.50% 38.40% 11.50%

EidoScarch
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A New Approach

 Most models try to find some relationship that explains all of the
examples. The best fitting model fits all of the data best.

* Content-based search allows for the possibility that not all the
past data matters in a given situation
* It's an empirical method
* It allows us to capture complex relationships in a simpler way

e Search by example is the foundation
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Thank You

Presented by David Kedmey
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Predicting Equity Returns
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IS It Predictive?

* Within a liquid universe of the largest 1,000 U.S. equities, a market
neutral strategy which goes long the highest-ranked decile of
stocks and short the lowest-ranked decile of stocks produces
annualized returns of 21% with a Sharpe ratio of 2.0

Cumulative returns of long/short portfolios
180%

160%
140%
120%

100%

60%
40%
20%
0%

= =] b~ I~ w ] =N (=) (=] = - = o~ o (32] o

o = f=] (=] (=1 (=1 =1 (=1 — — —_ —_ — —_— e —

(= (=] (=] < (=] (=] < (= (=] (=] (=1 (=] (=] < = (=

o~ o o~ o o™ ol o™ o~ N ol o o ol ™ ol [

ol w ol v o] o o] (o] w (o] o [al] [+ 2] (o] o o] @

Quintile em——Decile

E ido SearCh Copyright © 2014 - All Rights Reserved. | Boston ® New York ¢ Toronto



Our Axioms

e Financial time series data patterns, such as price patterns, reflect
aggregate investor or system behavior in the market, including
liquidity supply and demand and behavioral biases.

e Although the behavior of market participants and their responses
to changes in market conditions and microstructure change over
time, we should expect some consistency in their exhibited
behavior

* This expectation underlies the idea of the predictive nature of
trends in time series data, and that patterns should repeat over
time.
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Research Methodology

 We restricted our universe to large, investible names

* We constructed a time-varying universe of the 1000 largest U.S.
equities by market capitalization, roughly analogous to the Russell
1000 index components

e The searches were performed across historical top-1000 names
 We divided our historical data period into three sections:
e Search space period: 1990 to date in question (no look ahead bias)

* In sample period: 2006 to 2009
e Out of sample period: 2010 to 2013
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Research Methodology

 We examined patterns designed to predict the next 5 trading days
of a stock’s returns

* We updated these signals on a daily basis, and evaluated them
the next day
* For example, if a signal was generated using close-to-close daily
returns through Monday, we would act on the signal in our
simulations from Tuesday’s open price, and hold through
Wednesday’s open
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Returns

e Monotonic returns across the 10 decile groups

* Indicates the strategy’s ability to differentiate between
underperformers and outperformers, though the top and bottom

decile certainly provided the most differentiation.
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Cumulative Returns

* Next we construct long/short portfolios to examine the time series properties of
a strategy based on our forecasts.

° On each day we sort the stocks into Cumulative returns of long/short portfolios
4
. .. 180%
equally sized quintiles (200 stocks o
each) based on our forecast. i

120%

e We then create an equally weighted | o
long portfolio consisting of the
stocks with the highest forecasts, %
and an equally weighted short -
portfolio consisting of the stocks
with the lowest forecasts.
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*  We plot this market neutral
portfolio’s cumulative returns
throughout our historical period,
and do the same for decile portfolios
(100 stocks each).
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Returns

e We also show the annualized returns of the long/short portfolios,
and their annualized Sharpe ratios.

Long/short annualized returns
Decile Quintile

Return Sharpe Return Sharpe
Feb 2006-Jan 2014 21.0% 2.00 14.2% 1.89
2006 from Feb 23.6% 3.41 17.7% 3.45
2007 14.5% 2.46 8.2% 2.01
2008 54.4% 2.53 35.2% 2.24
2009 34.5% 2.40 23.8% 2.40
2010 5.2% 0.98 6.7 % 1.75
2011 15.3% 217 7.6% 1.55
2012 10.2% 2.15 6.3% 1.73
2013 12.9% 2.81 9.5% 2.86
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Returns

* The strategy exhibits positive returns in every year, with

particularly strong predictability through the global financial crisis
in late 2008.

e Stock returns during that period were decidedly not
fundamentally driven, and technical patterns which captured
liquidity demands in the market were particularly predictive.

e Despite the extreme returns during this period, the Sharpe ratios
of the strategy was only somewhat higher, reflecting the much
higher volatility in the market at the time.
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Reversal

* Could an investor achieve the same results by employing a simple
strategy of buying past loser stocks and selling past winner stocks?

 We conducted several studies to verify that the returns to the
EidoSearch strategy are not subsumed by the naive reversal
strategy

 The two strategies have a correlation of only 6% on average.

* This makes sense given that the EidoSearch patterns are agnostic to
the particular shape or trend and therefore don’t find just a single
predominant anomaly as does the reversal strategy.
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Reversal

e Here we see that although losers Wiﬂfin Witk}in
strongly outperform winners as Eidosearch Prior . Prior
shown by the higher general values forecast: Overall Losers Winners
in the “Within Prior Losers” Low 5.7% 14.0% 9.1%
column, the EidoSearch strategy is 2 10'60/’ 18'0f '1'3f’
also quite profitable within the 3 11.7% 23.4% 2.1%

. . . 4 12.4% 21.9% 3.3%
prior loser and prior winner
High 19.9% 39.6% 8.4%
columns
* The lower rows outperforming the High-Low 14.29% 25.6% 17.5%

higher rows by 25.6% within the
Prior Losers group and 17.5% in the
Prior Winners group.
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The Associative Memory
Approach

e Predict daily returns for 1,000 U.S. equities over the last 8 years and analyzed the
result of buying the top 1% and shorting the bottom 1%

* The strategy would have yielded a 668% cumulative return over the 8 year period.
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